Ionospheric D region remote sensing using VLF radio atmospherics
نویسندگان
چکیده
Lightning discharges radiate the bulk of their electromagnetic energy in the very low frequency (VLF, 3–30 kHz) and extremely low frequency (ELF, 3–3000 Hz) bands. This energy, contained in impulse-like signals called radio atmospherics or sferics, is guided for long distances by multiple reflections from the ground and lower ionosphere. This suggests that observed sferic waveforms radiated from lightning and received at long distances (>1000 km) from the source stroke contain information about the state of the ionosphere along the propagation path. The focus of this work is on the extraction of nighttime D region electron densities (in the altitude range of ∼70–95 km) from observed VLF sferics. In order to accurately interpret observed sferic characteristics, we develop a model of sferic propagation which is based on an existing frequency domain subionospheric VLF propagation code. The model shows that the spectral characteristics of VLF sferics depend primarily on the propagation path averaged ionospheric D region electron density profile, covering the range of electron densities from ∼ 10 to 10 cm−3. To infer the D region density from observed VLF sferics, we find the electron density profile that produces a modeled sferic spectrum that most closely matches an observed sferic spectrum. In most nighttime cases the quality of the agreement and the uncertainties involved allow the height of an exponentially varying electron density profile to be inferred with a precision of ∼0.2 km.
منابع مشابه
Ionospheric E region remote sensing with ELF radio atmospherics
Radio remote sensing of the ionospheric E region can be difficult, particularly in the nighttime E region valley which lies between two regions of higher electron density. We show that extremely low frequency (ELF) electromagnetic waves launched from below penetrate this region because of their low attenuation and can be reflected from both the D region and the top of the E region valley. This ...
متن کاملRadio atmospheric propagation on Mars and potential remote sensing applications
We theoretically analyze the propagation of very low frequency (VLF) and extremely low frequency (ELF) electromagnetic energy in the spherical waveguide formed by the ground and ionosphere of Mars to investigate the possibility of using such signals to remotely sense Martian ground conductivity and ionospheric parameters. This energy is presumed to be radiated from an electrical discharge in a ...
متن کاملIonospheric <i>E</i> region remote sensing with ELF radio atmospherics
Radio remote sensing of the ionospheric E region can be difficult, particularly in the nighttime E region valley which lies between two regions of higher electron density. We show that extremely low frequency (ELF) electromagnetic waves launched from below penetrate this region because of their low attenuation and can be reflected from both the D region and the top of the E region valley. This ...
متن کاملNighttime D region electron density profiles and variabilities inferred from broadband measurements using VLF radio emissions from lightning
[1] Lightning discharges radiate most of their electromagnetic energy in the very low frequency (VLF, 3–30 kHz) and extremely low frequency (ELF, 3–3000 Hz) bands and are, consequently, an effective tool for remotely sensing the nighttime ionospheric D region electron density profile. Using broadband lightning-generated VLF signals, we derived the night-to-night variations of the midlatitude io...
متن کاملDaytime ionospheric D region sharpness derived from VLF radio atmospherics
[1] We described and applied a technique to measure the local midlatitude daytime ionospheric D region electron density profile sharpness from the Earth‐ionosphere waveguide mode interference pattern in the spectra of radio atmospherics (or sferics for short), which are the high‐power, broadband, very low frequency (VLF, 3–30 kHz) signals launched by lightning discharges. VLF propagation simula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998